
Software Engineering for Machine Learning:
A Case Study

Saleema Amershi
Microsoft Research

Redmond, WA USA
samershi@microsoft.com

Andrew Begel
Microsoft Research

Redmond, WA USA
andrew.begel@microsoft.com

Christian Bird
Microsoft Research

Redmond, WA USA
cbird@microsoft.com

Robert DeLine
Microsoft Research

Redmond, WA USA
rdeline@microsoft.com

Harald Gall
University of Zurich
Zurich, Switzerland

gall@ifi.uzh.ch

Ece Kamar
Microsoft Research

Redmond, WA USA
eckamar@microsoft.com

Nachiappan Nagappan
Microsoft Research

Redmond, WA USA
nachin@microsoft.com

Besmira Nushi
Microsoft Research

Redmond, WA USA
besmira.nushi@microsoft.com

Thomas Zimmermann
Microsoft Research

Redmond, WA USA
tzimmer@microsoft.com

Abstract—Recent advances in machine learning have stim-
ulated widespread interest within the Information Technology
sector on integrating AI capabilities into software and services.
This goal has forced organizations to evolve their development
processes. We report on a study that we conducted on observing
software teams at Microsoft as they develop AI-based applica-
tions. We consider a nine-stage workflow process informed by
prior experiences developing AI applications (e.g., search and
NLP) and data science tools (e.g. application diagnostics and bug
reporting). We found that various Microsoft teams have united
this workflow into preexisting, well-evolved, Agile-like software
engineering processes, providing insights about several essential
engineering challenges that organizations may face in creating
large-scale AI solutions for the marketplace. We collected some
best practices from Microsoft teams to address these challenges.
In addition, we have identified three aspects of the AI domain that
make it fundamentally different from prior software application
domains: 1) discovering, managing, and versioning the data
needed for machine learning applications is much more complex
and difficult than other types of software engineering, 2) model
customization and model reuse require very different skills than
are typically found in software teams, and 3) AI components
are more difficult to handle as distinct modules than traditional
software components — models may be “entangled” in complex
ways and experience non-monotonic error behavior. We believe
that the lessons learned by Microsoft teams will be valuable to
other organizations.

Index Terms—AI, Software engineering, process, data

I. INTRODUCTION

Personal computing. The Internet. The Web. Mobile com-
puting. Cloud computing. Nary a decade goes by without a
disruptive shift in the dominant application domain of the
software industry. Each shift brings with it new software
engineering goals that spur software organizations to evolve
their development practices in order to address the novel
aspects of the domain.

The latest trend to hit the software industry is around
integrating artificial intelligence (AI) capabilities based on
advances in machine learning. AI broadly includes technolo-
gies for reasoning, problem solving, planning, and learning,
among others. Machine learning refers to statistical modeling

techniques that have powered recent excitement in the software
and services marketplace. Microsoft product teams have used
machine learning to create application suites such as Bing
Search or the Cortana virtual assistant, as well as platforms
such as Microsoft Translator for real-time translation of text,
voice, and video, Cognitive Services for vision, speech, and
language understanding for building interactive, conversational
agents, and the Azure AI platform to enable customers to build
their own machine learning applications [1]. To create these
software products, Microsoft has leveraged its preexisting
capabilities in AI and developed new areas of expertise across
the company.

In this paper, we describe a study in which we learned how
various Microsoft software teams build software applications
with customer-focused AI features. For that, Microsoft has
integrated existing Agile software engineering processes with
AI-specific workflows informed by prior experiences in devel-
oping early AI and data science applications. In our study, we
asked Microsoft employees about how they worked through
the growing challenges of daily software development specific
to AI, as well as the larger, more essential issues inherent in the
development of large-scale AI infrastructure and applications.
With teams across the company having differing amounts of
work experience in AI, we observed that many issues reported
by newer teams dramatically drop in importance as the teams
mature, while some remain as essential to the practice of large-
scale AI. We have made a first attempt to create a process
maturity metric to help teams identify how far they have come
on their journeys to building AI applications.

As a key finding of our analyses, we discovered three funda-
mental differences to building applications and platforms for
training and fielding machine-learning models than we have
seen in prior application domains. First, machine learning is all
about data. The amount of effort and rigor it takes to discover,
source, manage, and version data is inherently more complex
and different than doing the same with software code. Second,
building for customizability and extensibility of models require
teams to not only have software engineering skills but almost



Fig. 1. The nine stages of the machine learning workflow. Some stages are data-oriented (e.g., collection, cleaning, and labeling) and others are model-oriented
(e.g., model requirements, feature engineering, training, evaluation, deployment, and monitoring). There are many feedback loops in the workflow. The larger
feedback arrows denote that model evaluation and monitoring may loop back to any of the previous stages. The smaller feedback arrow illustrates that model
training may loop back to feature engineering (e.g., in representation learning).

always require deep enough knowledge of machine learning to
build, evaluate, and tune models from scratch. Third, it can be
more difficult to maintain strict module boundaries between
machine learning components than for software engineering
modules. Machine learning models can be “entangled” in
complex ways that cause them to affect one another during
training and tuning, even if the software teams building them
intended for them to remain isolated from one another.

The lessons we identified via studies of a variety of teams
at Microsoft who have adapted their software engineering
processes and practices to integrate machine learning can help
other software organizations embarking on their own paths
towards building AI applications and platforms.

In this paper, we offer the following contributions.
1) A description of how several Microsoft software en-

gineering teams work cast into a nine-stage workflow
for integrating machine learning into application and
platform development.

2) A set of best practices for building applications and
platforms relying on machine learning.

3) A custom machine-learning process maturity model for
assessing the progress of software teams towards excel-
lence in building AI applications.

4) A discussion of three fundamental differences in how
software engineering applies to machine-learning–centric
components vs. previous application domains.

II. BACKGROUND

A. Software Engineering Processes

The changing application domain trends in the software
industry have influenced the evolution of the software pro-
cesses practiced by teams at Microsoft. For at least a decade
and a half, many teams have used feedback-intense Agile
methods to develop their software [2], [3], [4] because they
needed to be responsive at addressing changing customer
needs through faster development cycles. Agile methods have
been helpful at supporting further adaptation, for example,
the most recent shift to re-organize numerous team’s prac-
tices around DevOps [5], which better matched the needs
of building and supporting cloud computing applications and
platforms.1 The change to DevOps occurred fairly quickly
because these teams were able to leverage prior capabilities

1https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/

in continuous integration and diagnostic-gathering, making it
simpler to implement continuous delivery.

Process changes not only alter the day-to-day development
practices of a team, but also influence the roles that people
play. 15 years ago, many teams at Microsoft relied heavily on
development triads consisting of a program manager (require-
ments gathering and scheduling), a developer (programming),
and a tester (testing) [6]. These teams’ adoption of DevOps
combined the roles of developer and tester and integrated
the roles of IT, operations, and diagnostics into the mainline
software team.

In recent years, teams have increased their abilities to an-
alyze diagnostics-based customer application behavior, prior-
itize bugs, estimate failure rates, and understand performance
regressions through the addition of data scientists [7], [8], who
helped pioneer the integration of statistical and machine learn-
ing workflows into software development processes. Some
software teams employ polymath data scientists, who “do it
all,” but as data science needs to scale up, their roles specialize
into domain experts who deeply understand the business prob-
lems, modelers who develop predictive models, and platform
builders who create the cloud-based infrastructure.

B. ML Workflow

One commonly used machine learning workflow at Mi-
crosoft has been depicted in various forms across industry
and research [1], [9], [10], [11]. It has commonalities with
prior workflows defined in the context of data science and data
mining, such as TDSP [12], KDD [13], and CRISP-DM [14].
Despite the minor differences, these representations have in
common the data-centered essence of the process and the
multiple feedback loops among the different stages. Figure 1
shows a simplified view of the workflow consisting of nine
stages.

In the model requirements stage, designers decide which
features are feasible to implement with machine learning and
which can be useful for a given existing product or for a
new one. Most importantly, in this stage, they also decide
what types of models are most appropriate for the given
problem. During data collection, teams look for and integrate
available datasets (e.g., internal or open source) or collect their
own. Often, they might train a partial model using available
generic datasets (e.g., ImageNet for object detection), and then
use transfer learning together with more specialized data to



train a more specific model (e.g., pedestrian detection). Data
cleaning involves removing inaccurate or noisy records from
the dataset, a common activity to all forms of data science.

Data labeling assigns ground truth labels to each record.
For example, an engineer might have a set of images on hand
which have not yet been labeled with the objects present in
the image. Most of the supervised learning techniques require
labels to be able to induce a model. Other techniques (e.g.,
reinforcement learning) use demonstration data or environment
rewards to adjust their policies. Labels can be provided either
by engineers themselves, domain experts, or by crowd workers
in online crowd-sourcing platforms.

Feature engineering refers to all activities that are performed
to extract and select informative features for machine learning
models. For some models (e.g. convolutional neural networks),
this stage is less explicit and often blended with the next stage,
model training. During model training, the chosen models
(using the selected features) are trained and tuned on the
clean, collected data and their respective labels. Then in
model evaluation, the engineers evaluate the output model
on tested or safeguard datasets using pre-defined metrics.
For critical domains, this stage might also involve extensive
human evaluation. The inference code of the model is then
deployed on the targeted device(s) and continuously monitored
for possible errors during real-world execution.

For simplicity the view in Figure 1 is linear, however,
machine learning workflows are highly non-linear and contain
several feedback loops. For example, if engineers notice that
there is a large distribution shift between the training data
and the data in the real world, they might want to go back
and collect more representative data and rerun the workflow.
Similarly, they may revisit their modeling choices made in the
first stage, if the problem evolves or if better algorithms are
invented. While feedback loops are typical in Agile software
processes, the peculiarity of the machine learning workflow
is related to the amount of experimentation needed to con-
verge to a good model for the problem. Indeed, the day-
to-day work of an engineer doing machine learning involves
frequent iterations over the selected model, hyper-parameters,
and dataset refinement. Similar experimental properties have
been observed in the past in scientific software [15] and
hardware/software co-design [16]. This workflow can become
even more complex if the system is integrative, containing
multiple ML components which interact together in complex
and unexpected ways [17].

C. Software Engineering for Machine Learning

The need for adjusting software engineering practices in
the recent era has been discussed in the context of hidden
technical debt [18] and troubleshooting integrative AI [19],
[20]. This work identifies various aspects of ML system archi-
tecture and requirements which need to be considered during
system design. Some of these aspects include hidden feedback
loops, component entanglement and eroded boundaries, non-
monotonic error propagation, continuous quality states, and
mismatches between the real world and evaluation sets. On a

related line of thought, recent work also discusses the impact
that the use of ML-based software has on risk and safety
concerns of ISO standards [21]. In the last five years, there
have been multiple efforts in industry to automate this process
by building frameworks and environments to support the ML
workflow and its experimental nature [1], [22], [23]. However,
ongoing research and surveys show that engineers still struggle
to operationalize and standardize working processes [9], [24],
[23]. The goal of this work is to uncover detailed insights on
ML-specific best practices used by developers at Microsoft.
We share these insights with the broader community aspiring
that such take-away lessons can be valuable to other companies
and engineers.

D. Process Maturity

Software engineers face a constantly changing set of plat-
forms and technologies that they must learn to build the newest
applications for the software marketplace. Some engineers
learn new methods and techniques in school, and bring them
to the organizations they work for. Other learn new skills on
the job or on the side, as they anticipate their organization’s
need for latent talent [25]. Software teams, composed of
individual engineers with varying amounts of experience in the
skills necessary to professionally build ML components and
their support infrastructure, themselves exhibit varying levels
of proficiency in their abilities depending on their aggregate
experience in the domain.

The software engineering discipline has long considered
software process improvement as one of its vital functions.
Researchers and practitioners in the field have developed sev-
eral well-known metrics to assess it, including the Capability
Maturity Model (CMM) [26] and Six Sigma [27]. CMM rates
the software processes of organizations on five levels, from
initial (ad hoc processes), repeatable, defined, capable (i.e.,
quantitatively measured), and efficient (i.e., deliberate process
improvement). Inspired by CMM, we build a first maturity
model for teams building systems and platforms that integrate
machine learning components.

III. STUDY

We collected data in two phases: an initial set of interviews
to gather the major topics relevant to our research questions
and a wide-scale survey about the identified topics. Our study
design was approved by Microsoft’s Ethics Advisory Board.

A. Interviews

Because the work practice around building and integrating
machine learning into software and services is still emerging
and is not uniform across all product teams, there is no
systematic way to identify the key stakeholders on the topic
of adoption. We therefore used a snowball sampling strategy,
starting with (1) leaders of teams with mature use of machine
learning (ML) (e.g., Bing), (2) leaders of teams where AI is
a major aspect of the user experience (e.g., Cortana), and (3)
people conducting company-wide internal training in AI and
ML. As we chose informants, we picked a variety of teams



TABLE I
THE STAKEHOLDERS WE INTERVIEWED FOR THE STUDY.

Id Role Product Area Manager?

I1 Applied Scientist Search Yes
I2 Applied Scientist Search Yes
I3 Architect Conversation Yes
I4 Engineering Manager Vision Yes
I5 General Manager ML Tools Yes
I6 Program Manager ML Tools Yes
I7 Program Manager Productivity Tools Yes
I8 Researcher ML Tools Yes
I9 Software Engineer Speech Yes

I10 Program Manager AI Platform No
I11 Program Manager Community No
I12 Scientist Ads No
I13 Software Engineer Vision No
I14 Software Engineer Vision No

1. Part 1
1.1. Background and demographics:

1.1.1. years of AI experience
1.1.2. primary AI use case*
1.1.3. team effectiveness rating
1.1.4. source of AI components

1.2. Challenges*
1.3. Time spent on each of the nine workflow activities
1.4. Time spent on cross-cutting activities

2. Part 2 (repeated for two activities where most time spent)
2.1. Tools used*
2.2. Effectiveness rating
2.3. Maturity ratings

3. Part 3
3.1. Dream tools*
3.2. Best practices*
3.3. General comments*

Fig. 2. The structure of the study’s questionnaire. An asterisk indicates an
open-response item.

to get different levels of experience and different parts of
the ecosystem (products with AI components, AI frameworks
and platforms, AI created for external companies). In all, we
interviewed 14 software engineers, largely in senior leadership
roles. These are shown in Table I. The interviews were
semi-structured and specialized to each informant’s role. For
example, when interviewing Informant I3, we asked questions
related to his work overseeing teams building the product’s
architectural components.

B. Survey

Based on the results of the interviews, we designed an
open-ended questionnaire whose focus was on existing work
practice, challenges in that work practice, and best practices
(Figure 2). We asked about challenges both directly and
indirectly by asking informants to imagine “dream tools” and
improvements that would make their work practice better. We
sent the questionnaire to 4195 members of internal mailing
lists on the topics of AI and ML. 551 software engineers

responded, giving us a 13.6% response rate. For each open-
response item, between two and four researchers analyzed the
responses through a card sort. Then, the entire team reviewed
the card sort results for clarity and consistency.

Respondents were fairly well spread across all divisions of
the company and came from a variety of job roles: Data and
applied science (42%), Software engineering (32%), Program
management (17%), Research (7%), and other (1%). 21% of
respondents were managers and 79% were individual contrib-
utors, helping us balance out the majority manager perspective
in our interviews.

In the next sections, we discuss our interview and survey
results, starting with the range of AI applications developed by
Microsoft, diving into best practices that Microsoft engineers
have developed to address some of the essential challenges
in building large-scale AI applications and platforms, show-
ing how the perception of the importance of the challenges
changes as teams gain experience building AI applications, and
finally, describing our proposed AI process maturity model.

IV. APPLICATIONS OF AI

Many teams across Microsoft have augmented their appli-
cations with machine learning and inference, some in some
surprising domains. We asked survey respondents for the ways
that they used AI on their teams. We card sorted this data
twice, once to capture the application domain in which AI
was being applied, and a second time to look at the (mainly)
ML algorithms used to build that application.

We found AI is used in traditional areas such as search, ad-
vertising, machine translation, predicting customer purchases,
voice recognition, and image recognition, but also saw it
being used in novel areas, such as identifying customer leads,
providing design advice for presentations and word processing
documents, providing unique drawing features, healthcare, and
improving gameplay. In addition, machine learning is being
used heavily in infrastructure projects to manage incident
reporting, identify the most likely causes for bugs, monitor
fraudulent fiscal activity, and to monitor network streams for
security breaches.

Respondents used a broad spectrum of ML approaches to
build their applications, from classification, clustering, dy-
namic programming, and statistics, to user behavior modeling,
social networking analysis, and collaborative filtering. Some
areas of the company specialized further, for instance, Search
worked heavily with ranking and relevance algorithms along
with query understanding. Many divisions in the company
work on natural language processing, developing tools for
entity recognition, sentiment analysis, intent prediction, sum-
marization, machine translation, ontology construction, text
similarity, and connecting answers to questions. Finance and
Sales have been keen to build risk prediction models and do
forecasting. Internal resourcing organizations make use of de-
cision optimization algorithms such as resource optimization,
planning, pricing, bidding, and process optimization.

The takeaway for us was that integration of machine learn-
ing components is happening all over the company, not just



on teams historically known for it. Thus, we could tell that we
were not just hearing from one niche corner of the company,
but in fact, we received responses from a broad range of
perspectives spread throughout.

V. BEST PRACTICES WITH MACHINE LEARNING IN
SOFTWARE ENGINEERING

In this section, we present our respondents’ viewpoints on
some of the essential challenges associated with building large-
scale ML applications and platforms and how they address
them in their products. We categorized the challenges by
card sorting interview and survey free response questions, and
then used our own judgment as software engineering and AI
researchers to highlight those that are essential to the practice
of AI on software teams.

A. End-to-end pipeline support

As machine learning components have become more mature
and integrated into larger software systems, our participants
recognized the importance of integrating ML development
support into the traditional software development infrastruc-
ture. They noted that having a seamless development experi-
ence covering (possibly) all the different stages described in
Figure 1 was important to automation. However, achieving this
level of integration can be challenging because of the differ-
ent characteristics of ML modules compared with traditional
software components. For example, previous work in this
field [18], [19] found that variation in the inherent uncertainty
(and error) of data-driven learning algorithms and complex
component entanglement caused by hidden feedback loops
could impose substantial changes (even in specific stages)
which were previously well understood in software engineer-
ing (e.g., specification, testing, debugging, to name a few).
Nevertheless, due to the experimental and even more iterative
nature of ML development, unifying and automating the day-
to-day workflow of software engineers reduces overhead and
facilitate progress in the field.

Respondents report to leverage internal infrastructure in the
company (e.g. AEther2) or they have built pipelines specialized
to their own use cases. It is important to develop a “rock solid,
data pipeline, capable of continuously loading and massaging
data, enabling engineers to try out many permutations of AI
algorithms with different hyper-parameters without hassle.”
The pipelines created by these teams are automated, supporting
training, deployment, and integration of models with the
product they are a part of. In addition, some pipeline engineers
indicated that “rich dashboards” showing the value provided
to users are useful.

Several respondents develop openly available IDEs to en-
able Microsoft’s customers to build and deploy their models
(e.g. Azure ML for Visual Studio Code3 and Azure ML
Studio4). According to two of our interviewees, the goal

2https://www.slideshare.net/MSTechCommunity/
ai-microsoft-how-we-do-it-and-how-you-can-too

3https://marketplace.visualstudio.com/items?itemName=ms-toolsai.vscode-ai
4https://azure.microsoft.com/en-us/services/machine-learning-studio/

of these environments is to help engineers discover, gather,
ingest, understand, and transform data, and then train, deploy,
and maintain models. In addition, these teams customize the
environments to make them easier to use by engineers with
varying levels of experience. “Visual tools help beginning data
scientists when getting started, but once they know the ropes
and branch out, such tools may get in their way and they may
need something else.”

B. Data availability, collection, cleaning, and management

Since many machine learning techniques are centered
around learning from large datasets, the success of ML-centric
projects often heavily depends on data availability, quality
and management [28]. Labeling datasets is costly and time-
consuming, so it is important to make them available for
use within the company (subject to compliance constraints).
Our respondents confirm that it is important to “reuse the
data as much as possible to reduce duplicated effort.” In
addition to availability, our respondents focus most heavily
on supporting the following data attributes: “accessibility,
accuracy, authoritativeness, freshness, latency, structuredness,
ontological typing, connectedness, and semantic joinability.”
Automation is a vital cross-cutting concern, enabling teams
to more efficiently aggregate data, extract features, synthesize
labelled examples. The increased efficiency enables teams to
“speed up experimentation and work with live data while they
experiment with new models.”

We found that Microsoft teams have found it necessary to
blend data management tools with their ML frameworks to
avoid the fragmentation of data and model management activ-
ities. A fundamental aspect of data management for machine
learning is the rapid evolution of data sources. Continuous
changes in data may originate either from (i) operations
initiated by engineers themselves, or from (ii) incoming fresh
data (e.g., sensor data, user interactions). Either case requires
rigorous data versioning and sharing techniques, for example,
“Each model is tagged with a provenance tag that explains with
which data it has been trained on and which version of the
model. Each dataset is tagged with information about where
it originated from and which version of the code was used to
extract it (and any related features).” This practice is used for
mapping datasets to deployed models or for facilitating data
sharing and reusability.

C. Education and Training

The integration of machine learning continues to become
more ubiquitous in customer-facing products, for example,
machine learning components are now widely used in produc-
tivity software (e.g., email, word processing) and embedded
devices (i.e., edge computing). Thus, engineers with traditional
software engineering backgrounds need to learn how to work
alongside of the ML specialists. A variety of players within
Microsoft have found it incredibly valuable to scaffold their
engineers’ education in a number of ways. First, the company
hosts a twice-yearly internal conference on machine learning
and data science, with at least one day devoted to introductions



to the basics of technologies, algorithms, and best practices.
In addition, employees give talks about internal tools and
the engineering details behind novel projects and product
features, and researchers present cutting-edge advances they
have seen and contributed to academic conferences. Second,
a number of Microsoft teams host weekly open forums on
machine learning and deep learning, enabling practitioners to
get together and learn more about AI. Finally, mailing lists and
online forums with thousands of participants enable anyone
to ask and answer technical and pragmatic questions about
AI and machine learning, as well as frequently share recent
results from academic conferences.

D. Model Debugging and Interpretability

Debugging activities for components that learn from data
not only focus on programming bugs, but also focus on
inherent issues that arise from model errors and uncertainty.
Understanding when and how models fail to make accurate
predictions is an active research area [29], [30], [31], which is
attracting more attention as ML algorithms and optimization
techniques become more complex. Several survey respondents
and the larger Explainable AI community [32], [33] propose
to use more interpretable models, or to develop visualization
techniques that make black-box models more interpretable. For
larger, multi-model systems, respondents apply modularization
in a conventional, layered, and tiered software architecture to
simplify error analysis and debuggability.

E. Model Evolution, Evaluation, and Deployment

ML-centric software goes through frequent revisions initi-
ated by model changes, parameter tuning, and data updates,
the combination of which has a significant impact on system
performance. A number of teams have found it important
to employ rigorous and agile techniques to evaluate their
experiments. They developed systematic processes by adopting
combo-flighting techniques (i.e., flighting a combination of
changes and updates), including multiple metrics in their ex-
periment score cards, and performing human-driven evaluation
for more sensitive data categories. One respondent’s team
uses “score cards for the evaluation of flights and storing
flight information: How long has it been flighted, metrics for
the flight, etc.” Automating tests is as important in machine
learning as it is in software engineering; teams create carefully
put-together test sets that capture what their models should do.
However, it is important that a human remains in the loop. One
respondent said, “we spot check and have a human look at the
errors to see why this particular category is not doing well,
and then hypothesize to figure out problem source.”

Fast-paced model iterations require more frequent deploy-
ment. To ensure that system deployment goes smoothly, sev-
eral engineers recommend not only to automate the training
and deployment pipeline, but also to integrate model building
with the rest of the software, use common versioning reposi-
tories for both ML and non-ML codebases, and tightly couple
the ML and non-ML development sprints and standups.

F. Compliance

Microsoft issued a set of principles around uses of AI in
the open world. These include fairness, accountability, trans-
parency, and ethics. All teams at Microsoft have been asked to
align their engineering practices and the behaviors of fielded
software and services in accordance with these principles.
Respect for them is a high priority in software engineering
and AI and ML processes and practices. A discussion of these
concerns is beyond the scope of this paper. To learn more
about Microsoft’s commitments to this important topic, please
read about its approach to AI.5

G. Varied Perceptions

We found that as a number of product teams at Microsoft in-
tegrated machine learning components into their applications,
their ability to do so effectively was mediated by the amount of
prior experience with machine learning and data science. Some
teams fielded data scientists and researchers with decades of
experience, while others had to grow quickly, picking up their
own experience and more-experienced team members on the
way. Due to this heterogeneity, we expected that our survey
respondents’ perceptions of the challenges their teams’ faced
in practicing machine learning would vary accordingly.

We grouped the respondents into three buckets (low,
medium, and high), evenly divided by the number of years
of experience respondents personally had with AI. First, we
ranked each of the card sorted categories of respondents’
challenges divided by the AI experience buckets. This list is
presented in Table II, initially sorted by the respondents with
low experience with AI.

Two things are worth noticing. First, across the board,
Data Availability, Collection, Cleaning, and Management, is
ranked as the top challenge by many respondents, no matter
their experience level. We find similarly consistent ranking for
issues around the categories of end-to-end pipeline support
and collaboration and working culture. Second, some of the
challenges rise or fall in importance as the respondents’ ex-
perience with AI differs. For example, education and training
is far more important to those with low experience levels in
AI than those with more experience. In addition, respondents
with low experience rank challenges with integrating AI into
larger systems higher than those with medium or high expe-
rience. This means that as individuals (and their teams) gain
experience building applications and platforms that integrate
ML, their increasing skills help shrink the importance of
some of the challenges they perceive. Note, the converse also
occurs. Challenges around tooling, scale, and model evolution,
evaluation, and deployment are more important for engineers
with a lot of experience with AI. This is very likely because
these more experienced individuals are tasked with the more
essentially difficult engineering tasks on their team; those with
low experience are probably tasked to easier problems until
they build up their experience.

5https://www.microsoft.com/en-us/ai/our-approach-to-ai



TABLE II
THE TOP-RANKED CHALLENGES AND PERSONAL EXPERIENCE WITH AI. RESPONDENTS WERE GROUPED INTO THREE BUCKETS (LOW, MEDIUM, HIGH)

BASED ON THE 33RD AND 67TH PERCENTILE OF THE NUMBER OF YEARS OF AI EXPERIENCE THEY PERSONALLY HAD (N=308). THE COLUMN Frequency
SHOWS THE INCREASE/DECREASE OF THE FREQUENCY IN THE MEDIUM AND HIGH BUCKETS COMPARED TO THE LOW BUCKETS. THE COLUMN Rank

SHOWS THE RANKING OF THE CHALLENGES WITHIN EACH EXPERIENCE BUCKET, WITH 1 BEING THE MOST FREQUENT CHALLENGE.

Frequency Rank

Medium High Experience
Challenge vs. Low vs. Low Trend Low Medium High

Data Availability, Collection, Cleaning, and Management -2% 60% 1 1 1
Education and Training -69% -78% 1 5 9
Hardware Resources -32% 13% 3 8 6
End-to-end pipeline support 65% 41% 4 2 4
Collaboration and working culture 19% 69% 5 6 6
Specification 2% 50% 5 8 8
Integrating AI into larger systems -49% -62% 5 16 13
Education: Guidance and Mentoring -83% -81% 5 21 18
AI Tools 144% 193% 9 3 2
Scale 154% 210% 10 4 3
Model Evolution, Evaluation, and Deployment 137% 276% 15 6 4

We also compared the overall frequency of each kind of
challenge using the same three buckets of AI experience.
Looking again at the top ranked challenge, Data Availability,
Collection, Cleaning, and Management, we notice that it
was reported by low and medium experienced respondents at
similar rates, but represented a lot more of the responses (60%)
given by those with high experience. This also happened for
challenges related to Specifications. However, when looking
at Education and Training, Integrating AI into larger systems,
and Education: Guidance and Mentoring, their frequency drops
significantly from the rate reported by the low experience
bucket than reported by the medium and high buckets. We
interpret this to mean that these challenges were less important
to the medium and high experience respondents than to those
with low experience levels. Thus, this table gives a big picture
of both which problems are perceived as most important within
each experience bucket, and which problems are perceived as
most important across the buckets.

Finally, we conducted a logistic regression analysis to build
a model that could explain the differences in frequency when
controlling for personal AI experience, team AI experience,
overall work experience, the number of concurrent AI projects,
and whether or not a respondent had formal education in
machine learning or data science techniques. We found five
significant coefficients:

• Education and Training was negatively correlated with per-
sonal AI experience with a coefficient of -0.18 (p < 0.02),
meaning that people with less AI experience found this to
be a more important issue.

• Educating Others was positively correlated with personal AI
experience with a coefficient of 0.26 (p < 0.01), meaning
that people with greater AI experience found this to be a
more important issue.

• Tool issues are positively correlated with team AI experience
with a coefficient of 0.13 (p < 0.001), meaning that as the
team gains experience working on AI projects, the degree

to which they rely on others’ and their own tools goes up,
making them think about their impact more often.

• End-to-end pipeline support was positively correlated with
formal education (p < 0.01), implying that only those with
formal education were working on building such a pipeline.

• Specifications were also positively correlated with formal
education (p < 0.03), implying that those with formal
education are the ones who write down the specifications
for their models and engineering systems.

The lesson we learn from these analyses is that the kinds
of issues that engineers perceive as important change as
they grow in their experience with AI. Some concerns are
transitory, related to one’s position within the team and the
accidental complexity of working together. Several others are
more fundamental to the practice of integrating machine learn-
ing into software applications, affecting many engineers, no
matter their experience levels. Since machine learning-based
applications are expected to continue to grow in popularity,
we call for further research to address these important issues.

VI. TOWARDS A MODEL OF ML PROCESS MATURITY

As we saw in Section V-G, we see some variance in the
experience levels of AI in software teams. That variation
affects their perception of the engineering challenges to be
addressed in their day-to-day practices. As software teams
mature and gel, they can become more effective and efficient
in delivering machine learning-based products and platforms.

To capture the maturity of ML more precisely than us-
ing a simple years-of-experience number, we created a ma-
turity model with six dimensions evaluating whether each
workflow stage: (1) has defined goals, (2) is consistently
implemented, (3) documented, (4) automated, (5) measured
and tracked, and (6) continuously improved. The factors are
loosely based on the concepts behind the Capability Maturity
Model (CMM) [26] and Six Sigma [27], which are widely



used in software development to assess and improve maturity
of software projects.

In the survey, we asked respondents to report the maturity
for the two workflow stages that each participant spent the
most time on (measured by number of hours they reported
spending on each activity). Specifically, we asked participants
to rate their agreement with the following statements S1..S6

(bold text was in the original survey) using a Likert response
format from Strongly Disagree (1) to Strongly Agree (5):

S1: My team has goals defined for what to accomplish with
this activity.

S2: My team does this activity in a consistent manner.
S3: My team has largely documented the practices related

to this activity.
S4: My team does this activity mostly in an automated way.
S5: My team measures and tracks how effective we are at

completing this activity.
S6: My team continuously improves our practices related to

this activity.

We gathered this data for the stages that respondents were
most familiar with because we found that they often specialize
in various stages of the workflow. This question was intended
to be lightweight so that respondents could answer easily,
while at the same time accounting for the wide variety of
ML techniques applied. Rather than being prescriptive (i.e., do
this to get to the next maturity level), our intention was to be
descriptive (e.g., how much automation is there in a particular
workflow stage? how well is a workflow stage documented?).
More work is needed to define maturity levels similar to CMM.

To analyze the responses, we defined an Activity Maturity
Index (AMI) to combine the individual scores into a single
measure. This index is the average of the agreement with
the six maturity statements S1..S6. As a means of validating
the Maturity Index, we asked participants to rate the Activity
Effectiveness (AE) by answering “How effective do you think
your team’s practices around this activity are on a scale from
1 (poor) to 5 (excellent)?”. The Spearman correlation between
the Maturity Index and the Effectiveness was between 0.4982
and 0.7627 (all statistically significant at p < 0.001) for
all AI activities. This suggests that the Maturity Index is a
valid composite measure that can capture the maturity and
effectiveness of AI activities.

In addition to the Activity Maturity Index and Activity
Effectiveness, we collected an Overall Effectiveness (OE)
score by asking respondents the question “How effectively
does your team work with AI on a scale from 1 (poor) to 5
(excellent)” Having the AMI, AE, and OE measures allowed
us to compare the maturity and effectiveness of different
organizations, disciplines, and application domains within Mi-
crosoft, and identify areas for improvement. We plot one of
these comparisons in Figure 3 and show the average overall
effectiveness scores divided by nine of the most represented
AI application domains in our survey. There are two things
to notice. First, the spread of the y-values indicates that
the OE metric can numerically distinguish between teams,

Fig. 3. The average overall effectiveness (OE) of a team’s ML practices
divided by application domain (anonymized). The y-axis labels have been
elided for confidentiality. An ANOVA and Scott Knott test identified two
distinct groups to the OE metric, labeled in black (A–F) and red (G–I).

meaning that some respondents feel their teams are at different
levels of maturity than others. Second, an ANOVA and Scott
Knott test show significant differences in the reported values,
demonstrating the potential value of this metric to identify the
various ML process maturity levels.

We recognize that these metrics represent a first attempt at
quantifying a process metric to enable teams to assess how
well they practice ML. In future work, we will refine our
instrument and further validate its utility.

VII. DISCUSSION

In this section, we synthesize our findings into three ob-
servations of some fundamental differences in the way that
software engineering has been adapted to support past popular
application domains and how it can be adapted to support
artificial intelligence applications and platforms. There may
be more differences, but from our data and discussions with
ML experts around Microsoft, these three rose to prominence.

A. Data discovery and management

Just as software engineering is primarily about the code
that forms shipping software, ML is all about the data that
powers learning models. Software engineers prefer to design
and build systems which are elegant, abstract, modular, and
simple. By contrast, the data used in machine learning are vo-
luminous, context-specific, heterogeneous, and often complex
to describe. These differences result in difficult problems when
ML models are integrated into software systems at scale.

Engineers have to find, collect, curate, clean, and process
data for use in model training and tuning. All the data has
to be stored, tracked, and versioned. While software APIs
are described by specifications, datasets rarely have explicit
schema definitions to describe the columns and characterize
their statistical distributions. However, due to the rapid itera-
tion involved in ML, the data schema (and the data) change
frequently, even many times per day. When data is ingested



from large-scale diagnostic data feeds, if ML engineers want
to change which data values are collected, they must wait
for the engineering systems to be updated, deployed, and
propagated before new data can arrive. Even “simple” changes
can have significant impacts on the volume of data collected,
potentially impacting applications through altered performance
characteristics or increased network bandwidth usage.

While there are very well-designed technologies to version
code, the same is not true for data. A given data set may
contain data from several different schema regimes. When a
single engineer gathers and processes this data, they can keep
track of these unwritten details, but when project sizes scale,
maintaining this tribal knowledge can become a burden. To
help codify this information into a machine-readable form,
Gebru et al. propose to use data sheets inspired by elec-
tronics to more transparently and reliably track the metadata
characteristics of these datasets [34]. To compare datasets
against each other, the Datadiff [35] tool enables developers to
formulate viable transformation functions over data samples.

B. Customization and Reuse

While it is well-understood how much work it takes to cus-
tomize and reuse code components, customizing ML models
can require much more. In software, the primary units of reuse
are functions, algorithms, libraries, and modules. A software
engineer can find the source code for a library (e.g. on Github),
fork it, and easily make changes to the code, using the same
skills they use to develop their own software.

Although fully-trained ML models appear to be functions
that one can call for a given input, the reality is far more
complex. One part of a model is the algorithm that powers
the particular machine learning technique being used (e.g.,
SVM or neural nets). Another is the set of parameters that
controls the function (e.g., the SVM support vectors or neural
net weights) and are learned during training. If an engineer
wants to apply the model on a similar domain as the data it was
originally trained on, reusing it is straightforward. However,
more signficant changes are needed when one needs to run
the model on a different domain or use a slightly different
input format. One cannot simply change the parameters with
a text editor. In fact, the model may require retraining, or
worse, may need to be replaced with another model. Both
require the software developer to have machine learning skills,
which they may never have learned. Beyond that, retraining
or rebuilding the model requires additional training data to be
discovered, collected, and cleaned, which can take as much
work and expertise as the original model’s authors put in.

C. ML Modularity

Another key attribute of engineering large-scale software
systems is modularity. Modules are separated and isolated
to ensure that developing one component does not interfere
with the behavior of others under development. In addition,
software modularity is strengthened by Conway’s Law, which
makes the observation that the teams that build each com-
ponent of the software organize themselves similarly to its

architecture. Thus, separate modules are often assigned to
separate teams. Module interactions are controlled by APIs
which do dual duty to enable software modules to remain
apart, but also describe the interfaces to minimize the amount
of communication needed between separate teams to make
their modules work together [36], [37].

Maintaining strict module boundaries between machine
learned models is difficult for two reasons. First, models are
not easily extensible. For example, one cannot (yet) take an
NLP model of English and add a separate NLP model for
ordering pizza and expect them to work properly together.
Similarly, one cannot take that same model for pizza and pair
it with an equivalent NLP model for French and have it work.
The models would have to be developed and trained together.

Second, models interact in non-obvious ways. In large-
scale systems with more than a single model, each model’s
results will affect one another’s training and tuning processes.
In fact, one model’s effectiveness will change as a result of
the other model, even if their code is kept separated. Thus,
even if separate teams built each model, they would have to
collaborate closely in order to properly train or maintain the
full system. This phenomenon (also referred to as component
entanglement) can lead to non-monotonic error propagation,
meaning that improvements in one part of the system might
decrease the overall system quality because the rest of the
system is not tuned to the latest improvements. This issue is
even more evident in cases when machine learning models are
not updated in a compatible way and introduce new, previously
unseen mistakes that break the interaction with other parts of
the system which rely on it.

VIII. LIMITATIONS

Our case study was conducted with teams at Microsoft, a
large, world-wide software company with a diverse portfolio
of software products. It is also one of the largest purveyors of
machine learning-based products and platforms. Some findings
are likely to be specific to the Microsoft teams and team
members who participated in our interviews and surveys. Nev-
ertheless, given the high variety of projects represented by our
informants, we expect that many of the lessons we present in
this paper will apply to other companies. Some of our findings
depend on the particular ML workflow used by some software
teams at Microsoft. The reader should be able to identify how
our model abstractions fit into the particulars of the models
they use. Finally, interviews and surveys rely on self-selected
informants and self-reported data. Wherever appropriate, we
stated that findings were our informants’ perceptions and
opinions. This is especially true with this implementation
of our ML process maturity model, which triangulated its
measures against other equally subjective measures with no
objective baseline. Future implementations of the maturity
model should endeavor to gather objective measures of team
process performance and evolution.



IX. CONCLUSION

Many teams at Microsoft have put significant effort into
developing an extensive portfolio of AI applications and plat-
forms by integrating machine learning into existing software
engineering processes and cultivating and growing ML talent.
In this paper, we described the results of a study to learn
more about the process and practice changes undertaken by a
number of Microsoft teams in recent years. From these find-
ings, we synthesized a set of best practices to address issues
fundamental to the large-scale development and deployment of
ML-based applications. Some reported issues were correlated
with the respondents’ experience with AI, while others were
applicable to most respondents building AI applications. We
presented a ML process maturity metric to help teams self-
assess how well they work with machine learning and offer
guidance towards improvements. Finally, we identified three
aspects of the AI domain that make it fundamentally different
than prior application domains. Their impact will require
significant research efforts to address in the future.

REFERENCES

[1] M. Salvaris, D. Dean, and W. H. Tok, “Microsoft AI Platform,” in Deep
Learning with Azure. Springer, 2018, pp. 79–98.

[2] A. Begel and N. Nagappan, “Usage and perceptions of agile software
development in an industrial context: An exploratory study,” in First
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM 2007), Sept 2007, pp. 255–264.

[3] A. Begel and N. Nagappan, “Pair programming: What’s in it for me?” in
Proc. of the Second ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, 2008, pp. 120–128.

[4] B. Murphy, C. Bird, T. Zimmermann, L. Williams, N. Nagappan, and
A. Begel, “Have agile techniques been the silver bullet for software
development at microsoft?” in 2013 ACM/IEEE Intl. Symp. on Empirical
Software Engineering and Measurement, Oct 2013, pp. 75–84.

[5] M. Senapathi, J. Buchan, and H. Osman, “DevOps capabilities, practices,
and challenges: Insights from a case study,” in Proc. of the 22nd
International Conference on Evaluation and Assessment in Software
Engineering 2018, 2018, pp. 57–67.

[6] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in Proc. of the 28th International
Conference on Software Engineering, 2006, pp. 492–501.

[7] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “The emerging role
of data scientists on software development teams,” in Proc. of the 38th
International Conference on Software Engineering, 2016, pp. 96–107.

[8] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “Data scientists in
software teams: State of the art and challenges,” IEEE Transactions on
Software Engineering, vol. 44, no. 11, pp. 1024–1038, 2018.

[9] C. Hill, R. Bellamy, T. Erickson, and M. Burnett, “Trials and tribulations
of developers of intelligent systems: A field study,” in Visual Languages
and Human-Centric Computing (VL/HCC), 2016 IEEE Symposium on.
IEEE, 2016, pp. 162–170.

[10] “Machine learning workflow,” https://cloud.google.com/ml-
engine/docs/tensorflow/ml-solutions-overview, accessed: 2018-09-24.

[11] K. Patel, J. Fogarty, J. A. Landay, and B. Harrison, “Investigating
statistical machine learning as a tool for software development,” in Proc.
of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2008, pp. 667–676.

[12] “The Team Data Science Process,” https://docs.microsoft.com/en-
us/azure/machine-learning/team-data-science-process/, accessed: 2018-
09-24.

[13] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The KDD process for
extracting useful knowledge from volumes of data,” Communications of
the ACM, vol. 39, no. 11, pp. 27–34, 1996.

[14] R. Wirth and J. Hipp, “CRISP-DM: Towards a standard process model
for data mining,” in Proc. 4th Intl. Conference on Practical Applications
of Knowledge Discovery and Data mining, 2000, pp. 29–39.

[15] J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl, and
G. Wilson, “How do scientists develop and use scientific software?”
in Proc. of the 2009 ICSE workshop on Software Engineering for
Computational Science and Engineering. IEEE Computer Society,
2009, pp. 1–8.

[16] G. De Michell and R. K. Gupta, “Hardware/software co-design,” Proc.
of the IEEE, vol. 85, no. 3, pp. 349–365, 1997.

[17] D. Bohus, S. Andrist, and M. Jalobeanu, “Rapid development of
multimodal interactive systems: a demonstration of platform for situated
intelligence,” in Proc. of the 19th ACM International Conference on
Multimodal Interaction. ACM, 2017, pp. 493–494.

[18] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden
technical debt in machine learning systems,” in NIPS, 2015.

[19] B. Nushi, E. Kamar, E. Horvitz, and D. Kossmann, “On human intellect
and machine failures: Troubleshooting integrative machine learning
systems.” in AAAI, 2017, pp. 1017–1025.

[20] S. Andrist, D. Bohus, E. Kamar, and E. Horvitz, “What went wrong
and why? diagnosing situated interaction failures in the wild,” in ICSR.
Springer, 2017, pp. 293–303.

[21] R. Salay, R. Queiroz, and K. Czarnecki, “An analysis of ISO 26262:
Using machine learning safely in automotive software,” arXiv preprint
arXiv:1709.02435, 2017.

[22] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo, Z. Haque,
S. Haykal, M. Ispir, V. Jain, L. Koc et al., “TFX: A tensorflow-based
production-scale machine learning platform,” in Proc. of the 23rd ACM
SIGKDD. ACM, 2017, pp. 1387–1395.

[23] V. Sridhar, S. Subramanian, D. Arteaga, S. Sundararaman, D. Roselli,
and N. Talagala, “Model governance: Reducing the anarchy of produc-
tion ML,” in USENIX. USENIX Association, 2018, pp. 351–358.

[24] T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, “Machine learning
in manufacturing: advantages, challenges, and applications,” Production
& Manufacturing Research, vol. 4, no. 1, pp. 23–45, 2016.

[25] J. Sillito and A. Begel, “App-directed learning: An exploratory study,”
in 6th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE), May 2013, pp. 81–84.

[26] C. Weber, B. Curtis, and M. B. Chrissis, The capability maturity model,
guidelines for improving the software process. Harlow: Addison Wesley,
1994.

[27] M. Alexander, Six Sigma: The breakthrough management strategy rev-
olutionizing the world’s top corporations. Taylor & Francis, 2001.

[28] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, “Data manage-
ment challenges in production machine learning,” in Proc. of the 2017
ACM SIGMOD, 2017, pp. 1723–1726.

[29] T. Kulesza, M. Burnett, W.-K. Wong, and S. Stumpf, “Principles of
explanatory debugging to personalize interactive machine learning,” in
Proc. of the 20th International Conference on Intelligent User Interfaces,
2015, pp. 126–137.

[30] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh,
“Modeltracker: Redesigning performance analysis tools for machine
learning,” in Proc. of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, 2015, pp. 337–346.

[31] B. Nushi, E. Kamar, and E. Horvitz, “Towards accountable AI: Hybrid
human-machine analyses for characterizing system failure,” in HCOMP,
2018, pp. 126–135.

[32] D. Gunning, “Explainable artificial intelligence (XAI),” Defense Ad-
vanced Research Projects Agency (DARPA), 2017.

[33] D. S. Weld and G. Bansal, “Intelligible artificial intelligence,” arXiv
preprint arXiv:1803.04263, 2018.

[34] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. M. Wallach,
H. D. III, and K. Crawford, “Datasheets for datasets,” CoRR, vol.
abs/1803.09010, 2018.

[35] C. Sutton, T. Hobson, J. Geddes, and R. Caruana, “Data diff: Inter-
pretable, executable summaries of changes in distributions for data
wrangling,” in Proc. of the 24th ACM SIGKDD. ACM, 2018, pp.
2279–2288.

[36] C. R. B. de Souza, D. Redmiles, and P. Dourish, ““Breaking the Code”,
moving between private and public work in collaborative software
development,” in Proc. of the 2003 International ACM SIGGROUP
Conference on Supporting Group Work, 2003, pp. 105–114.

[37] C. R. B. de Souza, D. Redmiles, L.-T. Cheng, D. Millen, and J. Patterson,
“Sometimes you need to see through walls: A field study of application
programming interfaces,” in Proc. of the 2004 ACM Conference on
Computer Supported Cooperative Work, 2004, pp. 63–71.


